免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發行征訂

首頁 >> 發行征訂 >> 征訂方式

基于變分模態分解與組合模型的導線載流量預測

來源:電工電氣發布時間:2025-04-28 12:28瀏覽次數:210

基于變分模態分解與組合模型的導線載流量預測

羅朝豐,黃曉劍,陸璐,馬波,王一帆,董心怡,鮑修齊
(國網浙江省電力有限公司湖州供電公司,浙江 湖州 313000)
 
    摘 要:輸電線路實時運行載流量存在隨機性強、波動性大的特點,現有載流量預測方法未深度挖掘時間序列特征。提出一種基于變分模態(VMD)分解載流量、自回歸滑動平均模型(ARMA)與雙向長短期記憶網絡(BiLSTM)組合的載流量預測方法,采用 VMD 算法將載流量時間序列分解為多尺度的平穩分量和非平穩的殘差分量,采用 ARMA 模型對平穩分量進行短期預測,采用 BiLSTM 模型對殘差分量進行預測,將分量預測值疊加獲得預測結果。測試結果顯示,該預測方法的平均絕對百分比誤差2.87%、均方根誤差1.710 A、平均誤差1.531 A,預測值與真實值擬合效果較好。
    關鍵詞: 載流量預測;變分模態分解;自回歸滑動平均模型;雙向長短期記憶網絡
    中圖分類號:TM726     文獻標識碼:A     文章編號:1007-3175(2025)04-0020-08
 
Current-Carrying Capacity Prediction of Conductors Based on Variational
Mode Decomposition and Combination Model
 
LUO Chao-feng, HUANG Xiao-jian, LU Lu, MA Bo, WANG Yi-fan, DONG Xin-yi, BAO Xiu-qi
(State Grid Zhejiang Electric Power Co., Ltd. Huzhou Power Supply Company, Huzhou 313000, China)
 
    Abstract: The current carrying capacity of transmission lines in real-time operation has the characteristics of strong randomness and great fluctuation, and the existing current-carrying capacity prediction methods do not dig deep into the time series characteristics. Therefore, this paper proposes a method for current-carrying capacity prediction that combines variational mode decomposition (VMD), autoregressive moving average (ARMA) model, and bidirectional long short-term memory (BiLSTM) network. Firstly, VMD algorithm is used to decompose the time series of current-carrying capacity into multi-scale stationary components and non-stationary residual components, then predicting the stationary component in the short term by using ARMA model, the BiLSTM model is used to predict the residual components, and the predicted values of the components are superimposed to obtain the predicted results. The test results show that the average absolute percentage error of the method is 2.87%, the root mean square error is 1.710 A, and the average error is 1.531 A. The predicted value fits the real value well.
    Key words: current-carrying capacity prediction; variational mode decomposition; autoregressive moving average model; bidirectional long short-term memory network
 
參考文獻
[1] 張靜忠,龐濤,劉一峰,等. 電力市場環境下的新能源有功自動控制[J]. 電氣工程學報,2022,17(3) :203-209.
[2] 李笑蓉,陳熙,石少偉,等. 高風電滲透率下儲能配置與系統調節能力提升關聯分析[J] . 電力需求側管理,2023,25(2) :8-14.
[3] 張怡,張鋒,李有春,等. 基于智慧輸電線路的動態增容輔助決策系統[J] . 電力系統保護與控制,2021,49(4) :160-168.
[4] 王亦清,朱寧西,孫鵬,等. 計及空間相關性的架空線路載流量預測方法[J]. 廣東電力,2017,30(10) :6-10.
[5] 林世治,溫步瀛,張斌. 基于氣象參數預測的輸電線路輸送容量概率模型研究[J] . 電工電能新技術,2019,38(3) :56-62.
[6] 劉偉雄,湯偉成,胡俊靈. 基于 PSO-BP 神經網絡的架空輸電線路弧垂預測技術研究[J] . 黑龍江電力,2021,43(3) :263-268.
[7] 孫輝,盧雪立,高正男,等. 基于 AL-BILSTMDN 的輸電線動態熱極限概率預測[J]. 電力系統及其自動化學報,2024,36(6) :110-118.
[8] 付善強,王孟夏,楊明,等. 架空導線載流量的多時段聯合概率密度預測[J] . 電力系統自動化,2019,43(17) :102-108.
[9] 楊靜凌,唐國強,張建文. 基于 EEMD-Elman-Adaboost 的中美股票價格預測研究[J] . 運籌與管理,2022,31(11) :194-199.
[10] 邵必林,紀丹陽. 基于 VMD-SE 的電力負荷分量的多特征短期預測[J]. 中國電力,2024,57(4) :162-170.
[11] 章劍光,劉理峰,林海峰,等. 基于空間相似度和深度學習的中長期用電量預測[J] . 浙江電力,2021,40(5) :45-52.
[12] 邱書琦,蹇照民,方立雄,等. 基于變分模態分解和集成學習的光伏發電預測[J] . 智慧電力,2024,52(3) :32-38.
[13] 郭成,代劍波,楊靈睿,等. 基于 ISGMD-DHT 的電壓暫降特征提取方法研究[J] . 電力系統保護與控制,2024,52(7) :70-79.
[14] 陶庭葉,高飛,吳兆福,等. 利用高斯平滑法提取 GPS 觀測序列中的結構振動監測信號[J]. 合肥工業大學學報(自然科學版),2010,33(1) :106-109.
[15] 吳旻昊,王建功,朱英剛,等. 基于 t-SNE 降維與聚類的主動配電網運行方式在線識別[J] . 電力建設,2023,44(8) :52-60.
[16] 張金良,王明雪. 基于 EEMD,SVM 和 ARMA 組合模型的電價預測[J]. 電力需求側管理,2020,22(3) :63-68.
[17] 賈磊,龔正,吳海偉,等. 基于改進 PSO 優化 LSTM 網絡的典型用電負荷模式識別[J] . 電力需求側管理,2024,26(1) :48-53.
[18] 薛展豪,陳力,林志穎,等. 基于雙向長短期記憶生成對抗網絡的電力系統次同步振蕩數據生成方法[J] .智慧電力,2024,52(5) :60-66.
[19] 劉昕明,吉建光,李瑋,等. 基于雙模態分解的發電站母線短期負荷預測[J] . 電氣工程學報,2024,19(1) :124-132.
[20] 竇真蘭,張春雁,許一洲,等. 基于多變量相空間重構和徑向基函數神經網絡的綜合能源系統電冷熱超短期負荷預測[J]. 電網技術,2024,48(1) :121-128.

 

主站蜘蛛池模板: 午夜少妇 | 国产黄色大片 | 在线观看免费高清 | av一区二区三区四区 | 免费看黄色的网站 | 久久在线视频 | 欧美精产国品一二三 | www.日韩| 高清乱码毛片 | 一本大道久久久久精品嫩草 | 性久久久久久 | 欧美亚洲天堂 | 人妻无码中文字幕 | 无码成人精品区一级毛片 | 午夜影院在线 | 51精产品一区一区三区 | 久久久久久久久免费看无码 | 国产日韩欧美在线观看 | 色姑娘综合网 | 成人三级视频 | 亚洲综合网站 | 色黄网站 | 精品少妇一区二区 | 99亚洲精品| 国产视频一区二区在线观看 | 我和公激情中文字幕 | 国产一区二区三区免费播放 | 亚洲精品一区二区三 | 久久h| 老熟妇一区二区三区啪啪 | 久久精品网 | 亚洲综合一区二区 | 911精品国产一区二区在线 | 日韩无码电影 | 超碰在线免费 | 亚洲毛片在线观看 | 亚洲精品午夜精品 | 欧美一二三 | 欧美精品在线视频 | 国产91在线播放 | 91视频在线观看 | 黄色a视频 | 欧美日韩高清 | 久久久久免费视频 | 91看片看淫黄大片 | 中文字幕一区二区三区四区五区 | av集中营| 黄片一区二区 | 一本大道久久久久精品嫩草 | 欧美午夜剧场 | 亚洲欧美日韩国产 | 日本69视频 | 国产做爰xxxⅹ久久久精华液 | 黄色三级视频 | 欧美综合一区 | 精产国品一二三产区m553麻豆 | 99在线免费观看 | 久久激情网 | 国产ts丝袜人妖系列视频 | 色婷婷久久 | 国产精品毛片 | 国产乱国产乱老熟300部视频 | www黄色 | 另类ts人妖一区二区三区 | 色综合天天综合网国产成人网 | 免费黄色小视频 | 99热免费 | 国产精品三级 | 狠狠干天天干 | 麻豆视频在线播放 | 亚洲视频一区二区三区 | 免费成人毛片 | 久久久久久久久久久久 | 中文字幕av一区二区 | 国产在线一区二区三区 | 少妇一级片| 亚洲精品在线视频 | 97在线观看| 中文字幕乱伦视频 | 欧美做受高潮 | 亚洲综合第一页 | 黄瓜视频在线播放 | www.亚洲天堂| 玖玖视频| 欧美国产视频 | 国产电影一区二区三区 | 成人亚洲 | 亚洲色图欧美 | 亚洲一区二区视频 | 密臀av | 四虎影视www在线播放 | 国产精品黄| 亚洲免费网站 | 亚洲日本欧美 | 国产浮力影院 | 91亚洲视频 | 久久精品电影 | 欧美视频网站 | 在厨房拨开内裤进入毛片 |