基于CEEMDAN-VMD和優化LSTM的電力短期負荷預測
馬藝銘
(國網遼寧省電力有限公司大連供電公司,遼寧 大連 116001)
摘 要 :電力系統負荷具有波動性高、隨機性強、不確定性及復雜度高的特點,為進一步提高電力 短期負荷預測精度,需要深層次挖掘數據間的非線性關系。提出了一種基于自適應噪聲完備集合經驗模 態分解 (CEEMDAN) 和變分模態分解 (VMD) 二次模態分解的長短期記憶 (LSTM) 網絡電力短期負荷預測模型。在利用CEEMDAN對原始數據序列進行初次模態分解得到序分量后,采用K-means手段將序分量樣本熵 (SampEn/SE) 聚類為三部分,對其中的強非平穩序列進行VMD技術的二次分解以減弱其非平穩性,將二次分解后得到的序分量與初次模態分解得到的中低頻序分量構建為新的組合后分別通過粒子群優化算法 (PSO) 得到最優超參數,代入參數訓練后得到各分量最優 LSTM 模型,并融合各模型預測結果得到最終負荷預測值。通過實驗表明,相較于其他模型,所提方法在實際預測中具備更好的模型性能和更高的 預測精度。
關鍵詞: 短期負荷預測;二次模態分解;自適應噪聲完備集合經驗模態分解;變分模態分解;樣本熵; 粒子群優化 ;長短期記憶網絡
中圖分類號 :TM715 文獻標識碼 :A 文章編號 :1007-3175(2025)11-0041-07
Short-Time Power Load Forecasting Based on CEEMDANVMD and Optimazed LSTM
MA Yi-ming
(State Grid Liaoning Electric Power Co., Ltd. Dalian Power Supply Company, Dalian 116001, China)
Abstract: Power system load is characterized by high volatility, strong randomness, high uncertainty, and high complexity. To further improve the accuracy of short-term power load forecasting, it is necessary to deeply explore the nonlinear relationships between data. A short-term power load forecasting model based on long short-term memory (LSTM) network with secondary modal decomposition combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) is proposed. After the initial modal decomposition of the original data sequence using CEEMDAN to obtain sequential components, the sample entropy (SampEn/SE) of the sequential components is clustered into three parts by K-means method. The strongly non-stationary sequences among them are subjected to secondary decomposition using VMD technology to reduce their non-stationarity. The sequential components obtained from the secondary decomposition and the medium-low frequency sequential components from the initial modal decomposition are constructed into new combinations, and the optimal hyperparameters are obtained for each combination through the particle swarm optimization (PSO) algorithm. After parameter training, the optimal LSTM model for each component is obtained, and the final load forecasting value is derived by fusing the prediction results of each model. Experimental results show that compared with other models, the proposed method exhibits better model performance and higher forecasting accuracy in practical predictions.
Key words: short-term load forecasting; secondary modal decomposition; complete ensemble empirical mode decomposition with adaptive noise ; variational mode decomposition; sample entropy; particle swarm optimization; long short-term memory network
參考文獻
[1] 李建林,丁子洋,游洪灝,等 . 構網型儲能支撐新型電力系統穩定運行研究[J]. 高壓電器,2023, 59(7):1-11.
[2] 李剛,方鴻,劉云鵬,等 . 新型電力系統中的大模型驅動技術:現狀、機遇與挑戰[J]. 高電壓技術, 2024,50(7):2864-2878.
[3] 楊海柱,田馥銘,張鵬,等 . 基于CEEMD-FE和AOALSSVM的短期電力負荷預測[J]. 電力系統保護與控制, 2022,50(13):126-133.
[4] 戴浩男,張辰灝,甄釗,等 . 基于時空特征聚類和雙層動態圖卷積網絡建模的短期凈負荷預測 [J]. 高電壓 技術,2024,50(9):3914-3923.
[5] 解振學,林帆,王若谷,等 . 基于時序動態回歸的超短期光伏發電功率預測方法[J]. 智慧電力,2022, 50(7):45-51.
[6] FUMO N, RAFE BISWAS M A.Regression analysis for prediction of residential energy consumption[J]. Renewable and Sustainable Energy Reviews,2015, 47 :332-343.
[7] AMBER K P, ASLAM M W, HUSSAIN S K.Electricity consumption forecasting models for administration buildings of the UK higher education sector[J]. Energy and Buildings,2015,90 :127-136.
[8] 孔祥玉,馬玉瑩,艾芊,等 . 新型電力系統多元用戶的用電特征建模與用電負荷預測綜述 [J]. 電力系統自 動化,2023,47(13):2-17.
[9] 彭曙蓉,彭家宜,楊云皓,等 . 基于時變深度前饋神經網絡的風電功率概率密度預測 [J]. 電力科學與技術 學報,2023,38(3):84-93.
[10] 申洪濤,李飛,史輪,等 . 基于氣象數據降維與混合深度學習的短期電力負荷預測 [J]. 電力建設,2024, 45(1) :13-21.
[11] 冉啟武,張宇航 . 基于模態分解及GRU-XGBoost短期 電力負荷預測 [J]. 電網與清潔能源,2024,40(4) : 18-27.
[12] 趙倩,鄭貴林 . 基于WD-LSSVM-LSTM模型的短期電力 負荷預測 [J]. 電測與儀表,2023,60(1) :23-28.
[13] 李焱,賈雅君,李磊,等 . 基于隨機森林算法的短期電力負荷預測 [J]. 電力系統保護與控制,2020, 48(21):117- 124.
[14] 張雲欽,程起澤,蔣文杰,等 . 基于EMD-PCA-LSTM的光伏功率預測模型 [J]. 太陽能學報,2021,42(9): 62-69.
[15] WU Z, HUANG N E.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].Advances in Adapt Data Analysis, 2009,1(1) :1-41.
[16] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP),2011 :4144-4147.
[17] 楊德州,劉嘉明,宋汶秦,等 . 基于改進型自適應白噪聲完備集成經驗模態分解的工業用戶負荷預測方法[J]. 電力系統保護與控制,2022,50(4):36-43.
[18] 陳錦鵬,胡志堅,陳緯楠,等 . 二次模態分解組合DBiLSTM-MLR 的綜合能源系統負荷預測 [J]. 電力系統 自動化,2021,45(13):85-94.
[19] 趙星宇,吳泉軍,朱威 . 基于CEEMDAN和TCN-LSTM模型的短期電力負荷預測[J]. 科學技術與工程,2023, 23(4):1557-1564.
[20] RICHMAN J S, MOORMAN J R.Physiological timeseries analysis using approximate entropy and sample entropy[J].American Journal of Physiology Heart and Circulatory Physiology,2000,278(6): H2039-H2049.