免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發(fā)布時間:2025-11-25 12:25瀏覽次數:10
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(tài)(SOH),輔助直流系統(tǒng)的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現(xiàn)變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統(tǒng)運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態(tài) ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態(tài)預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 精品免费 | 国产三级在线播放 | 日本一道本| 五月婷婷综合网 | 爆操少妇| 国产高清免费 | 男人日女人逼 | 午夜精品久久久久久久 | 亚洲欧美日韩在线 | 97在线观看免费高清 | 香蕉久久国产av一区二区 | 国产日韩视频 | 中文字字幕一区二区三区四区五区 | 麻豆视屏 | av高清在线 | 91久久精品日日躁夜夜躁国产 | 成人精品视频在线观看 | 男人添女人下部高潮全视频 | 99热国产精品 | 久草福利 | 久久精品在线观看 | 日韩午夜精品 | 亚洲熟女一区 | 都市激情亚洲 | 韩国伦理片在线播放 | 中文字幕二区 | 精品人妻午夜一区二区三区四区 | 综合五月 | 国产做爰xxxⅹ高潮视频12p | 伊人网在线观看 | 精品乱子伦一区二区三区 | 国内自拍偷拍视频 | 国产在线拍揄自揄拍无码视频 | 亚洲久久视频 | 超碰在线免费 | 一级片av | 天堂视频在线 | 亲嘴扒胸摸屁股免费视频日本网站 | 久久国产精品无码一级毛片 | 国产黄色电影 | 69免费视频 | 黄网站在线观看 | 久久久一区二区三区 | 国产女人18毛片18精品 | 丰满人妻一区二区 | 日批视频 | 爱爱视频免费看 | 婷婷精品进入 | 狠狠躁| 91免费在线| 成人综合网站 | 美女久久久 | 我和公激情中文字幕 | 亚洲精品久久久久中文字幕二区 | 国产精品不卡 | 综合另类 | 天天干天天操天天射 | 外国毛片 | 亚洲a视频| 靠逼网站| 你懂的在线播放 | 成人a级片 | 综合伊人 | 欧美日韩中文 | 人人草人人 | 成人免费网址 | 免费超碰| 蜜臀av一区二区三区 | 在线免费看毛片 | 久久久久久久久久久久久久久 | 国产a久久麻豆入口 | av成人在线观看 | 香蕉久久国产av一区二区 | 日韩在线免费观看视频 | 亚洲熟女一区 | 91精品91久久久中77777 | 亚洲精品国产av | 性欧美精品男男 | 大地资源二中文在线播放免费观看新剧 | 亚洲在线观看视频 | 色婷婷综合网 | 久久久久亚洲av成人无码电影 | 国产一区二区精品 | 少妇久久久 | 青青草网站 | 国产二区三区 | 成人污视频 | 欧美在线播放 | 久久成人免费视频 | 久久久免费 | 亚洲视频在线观看 | 最新av| 国产精品久久久午夜夜伦鲁鲁 | 亚洲图片欧美色图 | 91日韩 | 日日夜夜精品 | 99热免费 | 奇米狠狠 | 毛片在线视频 |