免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

發(fā)行征訂

首頁 >> 發(fā)行征訂 >> 征訂方式

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發(fā)布時間:2025-11-25 12:25瀏覽次數:10
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(tài)(SOH),輔助直流系統(tǒng)的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現(xiàn)變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統(tǒng)運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態(tài) ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態(tài)預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 欧美a√ | 男生c女生| 看毛片网站 | 国产黄色大片 | 短裙公车被强好爽h吃奶视频 | 日本三级在线 | 亚洲午夜精品久久久久久app | 久久久久久久久免费看无码 | 成人小视频在线观看 | 尤物视频在线播放 | 成人网址在线观看 | 女性裸体下面张开 | 麻豆短视频 | 黄色高清视频 | 国产国语亲子伦亲子 | 国产电影一区二区三区 | www毛片| 强开乳罩摸双乳吃奶羞羞www | 黄色在线播放 | 国产精品久久久久久久久久久久久久 | 丁香花电影在线观看免费高清 | 一区二区三区欧美 | 国产激情自拍 | 亚洲精品18在线观看 | 丁香六月婷婷 | 久久久久久久久久久久久久久久久久久 | 全部孕妇毛片丰满孕妇孕交 | 日韩中文字幕在线观看 | 免费爱爱视频 | 国产又粗又长 | 中文字幕99 | 欧美在线一区二区三区 | 九色在线视频 | 尤物视频在线播放 | 国产一区二区视频在线观看 | 久久美女视频 | 亚洲成人一区二区 | 亚洲综合图| 久久久久无码国产精品一区 | 少妇高潮久久久久久潘金莲 | 日本欧美久久久久免费播放网 | 国产在线第一页 | 狠狠躁| 97在线观看视频 | 国产视频久久 | 91精品视频在线 | 日日网| 日本xxxxxⅹxxxx69 | 国产人成一区二区三区影院 | 亚洲天堂影院 | 色哟哟av| 国产高清在线观看 | 欧美激情一区二区三区 | 俄罗斯毛片 | 少妇熟女视频一区二区三区 | 国产传媒视频 | 国产黄色在线 | 天天爱天天操 | 亚洲一级Av无码毛片久久精品 | 国产理论片 | 国产欧美一区二区三区在线看蜜臀 | 中国黄色大片 | 日日精品 | 国产精品无码一区二区三区免费 | 国产精品一品二区三区的使用体验 | 中国黄色大片 | 九九久久精品 | 日韩av无码一区二区三区不卡 | 成人动作片| 欧美黄视频 | 精产国产伦理一二三区 | 91在线精品视频 | 97在线免费观看 | 日韩精品免费 | 久久一区二区三区四区 | av中文字幕在线播放 | 亚洲综合一区二区 | av黄色片| 国产精品片 | 午夜寻花| 亚洲乱妇 | 日韩免费在线观看 | www.婷婷 | 国产一级在线 | 欧美肥老妇 | 成人黄色在线视频 | 日韩av电影网站 | 大尺度叫床戏做爰视频 | 爱爱免费视频 | 亚洲精品综合 | 日日碰狠狠添天天爽无码 | 精品久 | 超碰91在线 | 日本一级一片免费视频 | 成人毛片在线观看 | 日韩视频在线免费观看 | 极品美女高潮出白浆 | 成人av免费观看 | 日韩精品在线播放 |