免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于小波變換結合堆疊融合算法的非侵入式負載識別

來源:電工電氣發布時間:2025-10-28 15:28 瀏覽次數:31

基于小波變換結合堆疊融合算法的非侵入式負載識別

李港,邱達,劉西林
(湖北民族大學 智能科學與工程學院,湖北 恩施 445000)
 
    摘 要:針對非侵入式負載監測識別準確率低、泛化能力弱、穩定性差的問題,提出了一種結合特征選擇性小波變換與堆疊融合分類算法的負載識別方法。研究利用 CS5463 芯片采集電能數據,通過特征選擇性小波變換提取電流的時頻特征,并結合功率和功率因數構建復合特征向量。采用k 最近鄰算法(KNN)、隨機森林(RF)和支持向量機(SVM)作為基學習器,通過堆疊融合算法提升準確率、泛化能力,優化分類性能,并引入動態負載識別優化算法以提升實際應用效果。實驗結果表明,該堆疊融合模型在測試集上的準確率為98.42%,而單一模型KNN、SVM和RF的準確率分別為90.24%、94.99% 和97.10%,同樣數據集上未經小波變換的融合算法準確率為93.67%,加入動態負載識別優化算法后,模型的穩定性和準確性在實際應用中進一步提高。
    關鍵詞: 非侵入式負載監測;特征選擇性小波變換;堆疊融合算法;CS5463 芯片;動態負載識別優化算法
    中圖分類號:TM714 ;TM734     文獻標識碼:A     文章編號:1007-3175(2025)10-0031-07
 
A Non-Intrusive Load Identification Method Based on Wavelet
Transform and Stacked Fusion Algorithm
 
LI Gang, QIU Da, LIU Xi-lin
(College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China)
 
    Abstract: To address the challenges of low identification accuracy, weak generalization capability, and poor stability in non-intrusive load monitoring,this paper proposes a load identification method that integrates feature-selective wavelet transform with a stacked fusion algorithm. The study utilizes the CS5463 chip to collect electrical data, extracts the time-frequency characteristics of current signals by applying feature-selective wavelet transform, and combines with power and power factor information to construct a composite feature vector. Subsequently, k-nearest neighbors (KNN) algorithm, random forests (RF) , and support vector machines (SVM) are employed as base learners, the accuracy and generalization ability are enhanced through the stacked fusion algorithm, the classification performance is optimized, and the dynamic load identification optimization algorithm is introduced to improve the practical application effect. Experimental results demonstrate that the accuracy rate of the stacked fusion model on the test set is 98.42%, while the accuracy rates of the single models KNN, SVM and RF are 90.24%, 94.99% and 97.10% respectively. The accuracy rate of the fusion algorithm without wavelet transform on the same dataset is 93.67%. After adding the dynamic load identification optimization algorithm,the stability and accuracy of the model have been further enhanced in practical applications.
    Key words: non-intrusive load monitoring; feature-selective wavelet transform; stacked fusion algorithm; CS5463 chip; dynamic load identification optimization algorithm
 
參考文獻
[1] 陳繼開,祝世啟,李浩茹,等. 弱電網下并網逆變器鎖相環優化方法[J]. 儀器儀表學報,2022,43(2) :234-243.
[2] REHMAN A U, TITO S R, NIEUWOUDT P, et al.Applications of Non-Intrusive Load Monitoring Towards Smart and Sustainable Power Grids:A System Perspective[C]//2019 29th Australasian Universities Power Engineering Conference(AUPEC),2019 :1-6.
[3] HART G W.Nonintrusive appliance load monitoring [J].Proceedings of the IEEE,1992,80(12) :1870-1891.
[4] ZEIFMAN M, ROTH K.Nonintrusive appliance load monitoring: Review and outlook[J].IEEE Transactions on Consumer Electronics,2011,57(1) :76-84.
[5] NGUYEN M, ALSHAREEF S, GILANI A, et al.A novel feature extraction and classification algorithm based on power components using single-point monitoring for NILM[C]//2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering(CCECE),2015 :37-40.
[6] LU Lei, GU Chao, FENG Junguo, et al.Non-Intrusive Load Monitoring Based on Multiple Feature Optimization and Genetic Algorithm[C]//2022 5th International Conference on Renewable Energy and Power Engineering(REPE),2022 :115-120.
[7] SUN Mingxu, NAKOTY Francis Mawuli, LIU Qi, et al.Non-intrusive load monitoring system framework and load disaggregation algorithms:A survey[C]//2019 International Conference on Advanced Mechatronic Systems(ICAMechS),2019 :284-288.
[8] PRECIOSO D, GOMEZ-ULLATE D.Thresholding methods in non-intrusive load monitoring[J].The Journal of Supercomputing,2023,79(13) :14039-14062.
[9] MOHAMMAD I A, RAJABI R, ESTEBSARI A.Non-Intrusive Load Monitoring(NILM) Using Deep Neural Networks:A Review[EB/OL].(2023-06-08)[2025-06-05].https://arxiv.org/pdf/2306.05017.
[10] MURSHED M G S, MURPHY C, HOU D, et al.Machine learning at the network edge:A survey[J].ACM Computing Surveys(CSUR),2021,54(8) :1-37.
[11] GUIDOTTI R, MONREALE A, RUGGIERI S, et al.A survey of methods for explaining black box models[J].ACM Computing Surveys(CSUR),2018,51(5) :1-42.
[12] 董慧芬,陳蒙. 電能質量信號的非均勻子帶分解小波去噪[J]. 電子測量與儀器學報,2022,36(3) :149-156.
[13] HE Hui, LIU Zixuan, JIAO Runhai, et al.A novel nonintrusive load monitoring approach based on linear-chain conditional random fields[J].Energies,2019,12(9) :1797.
[14] CHEN Junfeng, WANG Xue, ZHANG Xiaotian, et al.Temporal and spectral feature learning with twostream convolutional neural networks for appliance recognition in NILM[J].IEEE Transactions on Smart Grid,2022,13(1) :762-772.
[15] FANG Zhaoyuan, ZHAO Dongbo, CHEN Chen, et al.Nonintrusive appliance identification with appliance-specific networks[J].IEEE Transactions on Industry Applications,2020,56(4) :3443-3452.
[16] GHOSH S , CHATTERJEE A , CHATTERJEE D . An improved load feature extraction technique for smart homes using fuzzy-based NILM[J].IEEE Transactions on Instrumentation and Measurement,2021,70 :1-9.
[17] REHMAN A U , LIE T T , VALLES B , et al .Comparative evaluation of machine learning models and input feature space for non-intrusive load monitoring[J].Journal of Modern Power Systems and Clean Energy,2021,9(5) :1161-1171.
[18] SAHA D, BHATTACHARJEE A, CHOWDHURY D, et al.Comprehensive NILM framework:Device type classification and device activity status monitoring using capsule network[J].IEEE Access,2020,8 :179995-180009.
[19] 朱浩,曹寧,鹿浩,等. 基于特征加權 KNN 的非侵入式負荷識別方法[J]. 電子測量技術,2022,45(8) :70-75.
[20] LI Ding, DICK Scott.Residential household nonintrusive load monitoring via graph-based multilabel semi-supervised learning[J].IEEE Transactions on Smart Grid,2019,10(4) :4615-4627.
[21] BERGES M, GOLDMAN E, MATTHEWS H S, et al. Training load monitoring algorithms on highly sub-metered home electricity consumption data[J].Tsinghua Science and Technology,2008,13(S1) :406-411.
[22] CHEN M T, LIN C M.Standby power management of a smart home appliance by using energy saving system with active loading feature identification[J].IEEE Transactions on Consumer Electronics,2019,65(1) :11-17.
[23] LIU Yanchi, WANG Xue, YOU Wei.Non-intrusive load monitoring by voltage-current trajectory enabled transfer learning[J].IEEE Transactions on Smart Grid,2019,10(5) :5609-5619.

 

主站蜘蛛池模板: xxxxx69| 午夜激情网站 | 久久久久久久久久久久久久久久久久久久 | 欧美日韩大片 | 日韩精品电影 | av网站在线播放 | 精品国产一区二区三区四区 | 日韩一卡二卡 | www.欧美| 欧美性受xxxx黑人xyx性爽 | 香蕉污视频 | 国产精品毛片 | 精品欧美| 久久久一区二区 | 精品人妻一区二区三区日产 | 国产精品久久久久久久9999 | 国产精品一区二区三区免费 | 欧美一区视频 | 久久久国产精品黄毛片 | 在线视频亚洲 | av免费播放 | 黄色免费网站 | 亚洲午夜av久久乱码 | 97视频在线 | 黄色一级大片 | 91久久久久 | 国产精品午夜福利 | www.一区二区| 少妇特黄a一区二区三区 | 密色av | 中国黄色一级片 | 日韩中文字幕在线观看 | 伊人免费视频 | 国产欧美日韩在线 | 中文字幕一区二区在线观看 | 成人在线免费视频 | 成人毛片网 | 午夜神马影院 | 波多野结衣视频在线 | 97国产| 一区二区三区免费 | 三级av在线 | 中出在线 | 波多野结衣伦理 | 一本色道久久综合亚洲精品酒店 | 久久久精品一区 | 日日摸日日添日日碰9学生露脸 | 国产又粗又猛又黄又爽无遮挡 | 精品人妻一区二区三区含羞草 | 国产1区2区3区 | 春色av | 亚洲综合激情五月久久 | 91视频大全 | 日本动漫艳母 | 国产日韩欧美视频 | 日本熟妇毛耸耸xxxxxx | 亚洲精品国产精品国自产观看 | 91成人免费| 日韩一级视频 | 一区二区三区四区在线 | 三上悠亚在线播放 | 久久久噜噜噜久久中文字幕色伊伊 | 黄色网址网站 | 中文字幕一区二区三区四区五区 | 国产精品高清无码 | 中文字幕99 | 午夜福利电影 | 成人看片网站 | 中文字幕在线免费 | 国产毛片视频 | 日本丰满少妇 | 91在线观看免费高清完整版在线观看 | 在线色 | 最新中文字幕在线观看 | www.桃色av嫩草.com | 亚洲欧洲一区二区 | 91在线精品秘密一区二区 | 欧美激精品 | av黄色在线观看 | 中文字幕在线观看一区 | 丰满少妇在线观看网站 | 中国色老太hd | 91成人在线视频 | 人人看av| 日韩高清国产一区在线 | 黄色网炮 | 国产精品一品二区三区的使用体验 | 亚洲激情av | 华丽的外出在线观看 | 久久青草视频 | 日本一级一片免费视频 | www久久 | 亚洲视频在线免费观看 | 住在隔壁的她动漫免费观看全集下载 | 图书馆的女友在线观看 | 日本人の夫妇交换 | 国产精品高清无码 | 国产青青草 | 国产xxx|