免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 最新索引

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發布時間:2025-11-25 12:25 瀏覽次數:10
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(SOH),輔助直流系統的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態 ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 影音先锋在线视频 | 国产成人一区 | 亚洲熟女一区 | 欧美777 | 日韩av免费 | 激情久久久 | 亚洲激情综合网 | 麻豆精品久久久久久久99蜜桃 | 91av视频在线 | av香蕉| 日韩在线免费观看视频 | 天天干天天做 | 天天久久| 成人免费观看视频 | 最近中文字幕在线观看 | 亚洲一区二区 | 欧洲女性下面有没有毛发 | 国产精品久久久久久免费播放 | 1024在线视频 | 亚洲色欲色欲www在线观看 | 日本孕妇孕交 | 伦伦影院午夜理伦片 | 国产精品嫩草影院桃色 | 亚洲3p | 性色网站| 69国产 | 免费黄色在线观看 | 在线一区二区三区 | 中文字幕日韩人妻在线视频 | 午夜日韩| 日韩午夜 | av在线资源| 国产精品97 | www久久久| 日韩成人无码 | 国产高清网站 | 未满十八18禁止免费无码网站 | 成人在线免费观看视频 | 黄片一区二区 | 色综合天天综合网国产成人网 | 色呦呦网站 | 天天爽天天干 | 欧美做受高潮 | 免费小视频 | www操| 在线观看国产视频 | 久久久久久91香蕉国产 | 亚洲无人区码一码二码三码的含义 | 黄色性视频 | 伊人网在线 | 爱爱视频网址 | 国产国语亲子伦亲子 | 日韩欧美在线视频 | 日韩视频一区二区 | 亚洲综合伊人 | 玖玖视频 | 91久久久久 | 午夜少妇 | 在线免费看毛片 | 欧美高清性xxxxhdvideosex | 亚洲免费在线观看 | 91激情| 丰满人妻一区二区三区蓝牛 | 男生女生插插插 | 精品国产精品三级精品av网址 | 99色| www成人| 91视频精品| 香蕉视频在线看 | 国产一区二区在线视频 | 婷婷视频| 国产一级一片免费播放放a 在线一区 | 国产免费自拍 | 免费的av| 国产视频一区二区三区四区 | 日本女人毛茸茸 | 欧美日韩视频 | 免费91视频 | 国产精品一区二区在线观看 | 成人高潮片免费视频 | 国产黄色av| 亚洲欧洲一区二区 | 国产吃瓜黑料一区二区 | 欧美一级淫片 | 在线永久看片免费的视频 | 69av视频| 国产精品久久久久久久久 | 亚洲播播| 黄瓜视频在线播放 | 住在隔壁的她动漫免费观看全集下载 | 国产做爰免费视频观看 | av小说在线观看 | 色婷婷视频 | 欧美一二区 | 天天爽夜夜爽夜夜爽精品视频 | 国产精品乱码一区二区 | 日韩人妻精品中文字幕 | 日韩av免费在线 | 日韩黄色片|