免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 往年索引

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發布時間:2025-11-25 12:25 瀏覽次數:12
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(SOH),輔助直流系統的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應性改進,將變電站蓄電池實際歷史運行數據與離線測試數據按比例混合制作訓練集,實現變電站蓄電池HFSOH之間的映射關系。實驗結果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統運行維護提供理論依據。
    關鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態 ;蓄電池運行工況 ;高斯過程回歸 ;訓練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態預測 [J]. 電工 技術學報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 成人在线观看免费爱爱 | 国产18照片色桃 | 大地资源二中文在线播放免费观看新剧 | 性生活视频网站 | 久久精品99久久久久久久久 | 成人在线观看免费爱爱 | 欧美一区二区三区 | 一区二区三区四区在线 | 乱码一区二区三区 | 日本免费在线观看 | 日韩色综合 | 欧美精品久久久久久 | 在线视频免费观看 | 日本欧美国产 | 激情综合五月天 | 欧美日韩国产一区二区 | 国产伦精品一区三区精东 | 91久久国产 | 亚洲精品欧美 | 亚洲一级Av无码毛片久久精品 | 欧美视频一区二区 | 波多野结衣一区 | 日韩精品人妻中文字幕有码 | 国产国语亲子伦亲子 | av高清在线 | av看片| 潘金莲一级淫片aaaaaa播放 | 一区二区三区久久 | 亚洲成人免费 | 二级黄色片| 久久久国产精品 | 成人在线免费观看视频 | 国产欧美日韩在线观看 | 无码人妻一区二区三区免费n鬼沢 | 操老女人视频 | 亚洲激情一区 | 日本xxxx18| 日韩中文字幕在线播放 | 今天成全在线观看免费播放动漫 | 欧美日韩视频 | 免费在线观看av | 黄色免费网站 | 亚洲成人一区二区三区 | 国产欧美在线 | 日韩免费看 | 国产精品美女高潮无套 | 奇米在线视频 | 久久综合av | 日韩一级片在线观看 | 欧美狠狠干 | 中文字幕在线观看视频www | 欧美片网站免费 | 天堂网在线观看 | 波多野结衣电影在线播放 | 亚洲综合图 | 亚洲成人自拍 | 男女无遮挡xx00动态图120秒 | 久久成人av | 亚洲色图图片 | 麻豆传媒在线看 | 伊人激情网 | 亚洲精品自拍 | 四房婷婷| 亚洲三级在线观看 | 搞中出 | 香蕉视频免费 | 91麻豆产精品久久久久久夏晴子 | 日本特黄 | 国产精品久久久久久免费播放 | 国产免费黄色 | 伊人在线视频 | 国产黄色录像 | 99热免费 | 久久久久久久国产精品 | 污污网站在线观看 | 丁香五香天堂网 | 大香伊人| 一区二区三区日韩 | 精品人妻无码一区二区三区换脸 | 活大器粗np高h一女多夫 | 亚洲一级电影 | 亚洲免费观看视频 | 小镇姑娘高清播放视频 | 91精品人妻一区二区三区蜜桃欧美 | 国产1区2区 | 成人午夜视频在线观看 | 免费一级黄色片 | 操日本女人 | 91蜜桃婷婷狠狠久久综合9色 | 欧美一二三 | 成年网站 | 亚洲精品大片 | av不卡在线 | 国产在线视频一区 | 欧美第二页 | 成人看片 | 黄片毛片| 99热精品在线观看 | 日本吃奶摸下激烈网站动漫 |