免费看大片a-亚洲精品中文字幕乱码三区91-久久久在线视频-中文字幕免费高清在线观看-狼人狠狠干-www婷婷-欧美第一视频-国产中文字字幕乱码无限-色呦呦在线播放-男女羞羞无遮挡-成人男女视频-久久传媒-久久草精品-久久久精品综合-国产免费二区-四虎影院一区二区-国产操人-操操操爽爽爽-色就是色网站-久久77777-神马伦理影视-91手机在线看片-黄视频国产-中文字幕第100页-视频免费1区二区三区

Suzhou Electric Appliance Research Institute
期刊號: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章檢索

首頁 >> 文章檢索 >> 欄目索引

基于改進高斯過程回歸的變電站直流蓄電池SOH估算

來源:電工電氣發(fā)布時間:2025-11-25 12:25 瀏覽次數(shù):10
基于改進高斯過程回歸的變電站直流蓄電池SOH估算
 
丁芃,謝昊含,司威,楊茹楠,劉明陽
(國網(wǎng)天津市電力公司濱海供電分公司,天津 300450)
 
    摘 要 :為了準確估算變電站直流蓄電池的健康狀態(tài)(SOH),輔助直流系統(tǒng)的運行決策,提出了一種基于改進高斯過程回歸的蓄電池SOH估算方法,通過建立變電站蓄電池組在實際不同運行工況下的蓄電池健康特征指標(HF),對高斯過程回歸算法進行適應(yīng)性改進,將變電站蓄電池實際歷史運行數(shù)據(jù)與離線測試數(shù)據(jù)按比例混合制作訓(xùn)練集,實現(xiàn)變電站蓄電池HFSOH之間的映射關(guān)系。實驗結(jié)果表明,該方法針對于變電站這一特殊場景下的蓄電池具有良好的估算效果,可為直流系統(tǒng)運行維護提供理論依據(jù)。
    關(guān)鍵詞 : 變電站 ;直流蓄電池 ;蓄電池健康狀態(tài) ;蓄電池運行工況 ;高斯過程回歸 ;訓(xùn)練集
    中圖分類號 :TM63 ;TM912     文獻標識碼 :A     文章編號 :1007-3175(2025)11-0014-07
 
SOH Estimation for DC Batteries in Substations Based on Improved Gaussian Process Regression
 
DING Peng, XIE Hao-han, SI Wei, YANG Ru-nan, LIU Ming-yang
(State Grid Tianjin Electric Power Company Binhai Power Supply Branch, Tianjin 300450, China)
 
    Abstract: In order to accurately estimate the state of health (SOH) of DC batteries in substations and assist in the operation decision-making of DC systems, this paper proposes a battery SOH estimation method based on improved Gaussian process regression. By establishing the health of feature (HF) of battery packs in substations under different operating conditions, the Gaussian process regression algorithm is adaptively improved. The actual historical operating data of substation batteries is mixed with offline test data in proportion to create a training set, achieving the mapping relationship between HF and SOH of substation batteries. The experimental results show that this method has good estimation effect on batteries in this special scenario of substations and can provide theoretical basis for the operation and maintenance of DC systems.
    Key words: substation; DC battery; state of health of battery; operating condition of battery; Gaussian process regression; training set
 
參考文獻
[1] 孫冬,許爽 . 梯次利用鋰電池健康狀態(tài)預(yù)測 [J]. 電工 技術(shù)學(xué)報,2018,33(9):2121-2129.
[2] GONG Qingrui, WANG Ping, CHENG Ze.An encoderdecoder model based on deep learning for state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2022,46:103804.
[3] TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles:A deep-learning enabled approach[J].Applied Energy,2021,291:116812.
[4] HAN Xuebing, OUYANG Minggao, LU Languang, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part Ⅱ :Pseudo-twodimensional model simplification and state of charge estimation[J].Journal of Power Sources, 2015,278 :814-825.
[5] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part3. State and parameter estimation[J]. Journal of Power Sources,2004,134(2):277-292.
[6] WANG Yujie, ZHANG Chenbin, CHEN Zonghai.A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter[J].Journal of Power Sources,2015,279:306-311.
[7] CHANG Chun, WANG Qiyue, JIANG Jiuchun, et al. Lithium-ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage,2021,38:102570.
[8] LIU Datong, ZHOU Jianbao, LIAO Haitao, et al.A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems,2015, 45(6):915-928.
[9] TIAN Jinpeng, XIONG Rui, SHEN Weixiang.Stateof-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics,2020, 35(10):10363-10373. [10] ZHANG Li, LI Kang, DU Dajun, et al.A sparse least squares support vector machine used for SOC estimation of Li-ion Batteries[J].IFACPapersOnLine,2019,52(11):256-261.
[11] LI Xiaoyu, YUAN Changgui, WANG Zhenpo.Multitime-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J].Journal of Power Sources,2020, 467:228358.
[12] GOEBEL K, SAHA B, SAXENA A, et al.Prognostics in battery health management[J].IEEE Instrumentation & Measurement Magazine,2008,11(4):33-40.
[13] HE Jianghe, WEI Zhongbao, BIAN Xiaolei, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J].IEEE Transactions on Transportation Electrification, 2020,6(2):417-426.
[14] XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering an Open Access Journal,2020,8(1):22-34.
[15] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL].(2014-12-11)[2025- 08-14].https//arxiv.org/abs/1412.3555.
主站蜘蛛池模板: 手机看片国产 | 天天操一操 | 九九成人| 女女百合国产免费网站 | 天天操夜夜操 | 中文无码熟妇人妻av在线 | 男女做爰猛烈高潮描写 | 精品久久久久久久久久久久 | 国产免费黄色 | 麻豆视频在线播放 | 自拍偷拍av | 一本色道久久综合狠狠躁的推荐 | 色哟哟入口国产精品 | 91免费视频网站 | 黄瓜视频在线观看 | 91视频导航 | 亚洲色图在线视频 | 日本少妇高潮抽搐 | 日韩福利 | 免费h漫禁漫天天堂 | 午夜精品一区二区三区在线视频 | 91美女片黄 | 久久综合av | 日韩不卡av | 91美女片黄 | 超碰中文字幕 | 久久夜色精品国产欧美乱极品 | 国产一级18片视频 | 91射区| 最新国产视频 | 国产无遮挡又黄又爽又色 | 91一区 | 亚洲女人被黑人巨大的原因 | 欧美成人综合 | 尤物在线观看 | 四虎影成人精品a片 | 久久久久一区二区三区 | 日韩第一区 | 久草精品视频 | 成人在线观看网站 | 90岁肥老奶奶毛毛外套 | 97自拍视频| 亚洲成人中文字幕 | 国产精品xxx| 色婷婷视频 | av片免费看 | 日本在线一区 | 午夜视频免费看 | 18深夜在线观看免费视频 | 亚洲免费在线观看视频 | 中文字幕人妻一区二区三区 | 青青草视频在线免费观看 | 免费网站观看www在线观 | 男生c女生 | 国产区在线观看 | 中文字幕国产精品 | 91免费看片 | 免费看黄色的网站 | 成人午夜免费视频 | 日韩精品在线视频 | 一级a毛片| 精品网站999www | 名校风暴在线观看免费高清完整 | 九九热在线观看 | 亚洲激情视频 | 日本欧美国产 | 欧美一级二级三级 | 欧美日本在线 | 在线看片 | 国产aⅴ激情无码久久久无码 | 秋霞福利 | 国产精品一区在线观看 | 免费爱爱视频 | 欧美a视频 | 黄色在线网站 | 91色综合 | 日本精品视频 | 一区二区三区四区在线 | 国产精品视频在线观看 | 国产一区二区三区免费 | 欧美日韩国产在线 | 一区二区三区在线观看视频 | 自拍视频在线观看 | 在线视频亚洲 | 夜夜嗨老熟女av一区二区三区 | 一本在线| 国精产品一区一区三区有限公司杨 | 欧美一级片| 熟妇人妻中文字幕无码老熟妇 | 嫩草视频在线观看 | 日韩欧美一区二区三区 | 90岁肥老奶奶毛毛外套 | 在线日韩av | 特级av| 日韩第一页 | 四虎影成人精品a片 | 国产一区二区三区四区 | 超碰人人爱 | 国产精品久久久久久免费播放 |